Chromosomal Disorders
What are chromosomes?
Chromosomes are organized packages of DNA found inside your body's cells. Your DNA contains genes that tell your body how to develop and function. Humans have 23 pairs of chromosomes (46 in total). You inherit one of each chromosome pair from your mother and the other from your father. Chromosomes vary in size. Each chromosome has a centromere, which divides the chromosome into two uneven sections. The shorter section is called the p arm, and the longer section is called the q arm. Genetics Home Reference (GHR) has a helpful picture of a chromosome.
What are the different types of chromosome disorders?
Chromosome disorders can be classified into two main types; numerical and structural. Numerical disorders occur when there is a change in the number of chromosomes (more or fewer than 46). Examples of numerical disorders include trisomy, monosomy and triploidy. Probably one of the most well-known numerical disorders is Down syndrome (trisomy 21). Other common types of numerical disorders include trisomy 13, trisomy 18, Klinefelter syndrome and Turner syndrome.
Structural chromosome disorders result from breakages within a chromosome. In these types of disorders there may be more or less than two copies of any gene. This difference in number of copies of genes may lead to clinical differences in affected individuals. Types of structural disorders include the following: (click on each type to view an illustration)
Structural chromosome disorders result from breakages within a chromosome. In these types of disorders there may be more or less than two copies of any gene. This difference in number of copies of genes may lead to clinical differences in affected individuals. Types of structural disorders include the following: (click on each type to view an illustration)
- Chromosomal deletions, sometimes known as partial monosomies, occur when a piece or section of chromosomal material is missing. Deletions can occur in any part of any chromosome. When there is just one break in the chromosome, the deletion is called a terminal deletion because the end (or terminus) of the chromosome is missing. When there are two breaks in the chromosome, the deletion is called an interstitial deletion because a piece of chromosome material is lost from within the chromosome. Deletions that are too small to be detected under a microscope are called microdeletions. A person with a deletion has only one copy of a particular chromosome segment instead of the usual two copies. Some examples of more common chromosome deletion syndromes include cri-du-chat syndrome and 22q11.2 deletion syndrome.
- Chromosomal duplications, sometimes known as partial trisomies, occur when there is an extra copy of a segment of a chromosome. A person with a duplication has three copies of a particular chromosome segment instead of the usual two copies. Like deletions, duplications can happen anywhere along the chromosome. Some examples of duplication syndromes include 22q11.2 duplication syndrome and MECP2 duplication syndrome.
- Balanced translocations occur when a chromosome segment is moved from one chromosome to another. In balanced translocations, there is no detectable net gain or loss of DNA.
- Unbalanced translocations occur when a chromosome segment is moved from one chromosome another. In unbalanced translocations, the overall amount of DNA has been altered (some genetic material has been gained or lost).
- Inversions occur when a chromosome breaks in two places and the resulting piece of DNA is reversed and re-inserted into the chromosome. Inversions that involve the centromere are called pericentric inversions; inversions that do not involve the centromere are called paracentric inversions.
- Isochromosomes are abnormal chromosomes with identical arms - either two short (p) arms or two long (q) arms. Both arms are from the same side of the centromere, are of equal length, and possess identical genes. Pallister-Killian syndrome is an example of a condition resulting from the presence of an isochromosome.
- Dicentric chromosomes result from the abnormal fusion of twp chromosome pieces, each of which includes a centromere.
- Ring chromosomes form when the ends of both arms of the same chromosome are deleted, which causes the remaining broken ends of the chromosome to be "sticky". These sticky ends then join together to make a ring shape. The deletion at the end of both arms of the chromosome results in missing DNA, which may cause a chromosome disorder. Genetics Home Reference (GHR) provides a diagram of the steps involved in the formation of a ring chromosome. An example of a ring condition is ring chromosome 14 syndrome.
What causes chromosome disorders?
The exact cause is unknown, but we know that chromosome abnormalities usually occur when a cell divides in two (a normal process that a cell goes through). Sometimes chromosome abnormalities happen during the development of an egg or sperm cell (called germline), and other times they happen after conception (called somatic).
In the process of cell division, the correct number of chromosomes is supposed to end up in the resulting cells. However, errors in cell division, called nondisjunction, can result in cells with too few or too many copies of a whole chromosome or a piece of a chromosome. Some factors, such as when a mother is of advanced maternal age (older then 35 years), can increase the risk for chromosome abnormalities in a pregnancy.
In the process of cell division, the correct number of chromosomes is supposed to end up in the resulting cells. However, errors in cell division, called nondisjunction, can result in cells with too few or too many copies of a whole chromosome or a piece of a chromosome. Some factors, such as when a mother is of advanced maternal age (older then 35 years), can increase the risk for chromosome abnormalities in a pregnancy.
What signs and symptoms are associated with rare chromosome disorders?
In general, the effects of rare chromosome disorders vary. With a loss or gain of chromosomal material, symptoms might include a combination of physical problems, health problems, learning difficulties and challenging behavior. The symptoms depend on which parts of which chromosomes are involved. The loss of a segment of a chromosome is usually more serious than having an extra copy of the same segment. This is because when you lose a segment of a chromosome, you may be losing one copy of an important gene that your body needs to function.
There are general characteristics of rare chromosomal disorders that occur to varying degrees in most affected people. For instance, some degree of learning disability and/or developmental delay will occur in most people with any loss or gain of material from chromosomes 1 through 22. This is because there are many genes located across all of these chromosomes that provide instructions for normal development and function of the brain.[2] Health providers can examine the chromosome to see where there is a break (a breakpoint). Then they can look at what genes may be involved at the site of the break. Knowing the gene(s) involved can sometimes, but not always, help to predict signs and symptoms.
There are general characteristics of rare chromosomal disorders that occur to varying degrees in most affected people. For instance, some degree of learning disability and/or developmental delay will occur in most people with any loss or gain of material from chromosomes 1 through 22. This is because there are many genes located across all of these chromosomes that provide instructions for normal development and function of the brain.[2] Health providers can examine the chromosome to see where there is a break (a breakpoint). Then they can look at what genes may be involved at the site of the break. Knowing the gene(s) involved can sometimes, but not always, help to predict signs and symptoms.
Support for people with rare chromosome disorders
- Your local general practitioner (GP)
- National Disability Insurance Scheme (NDIS): The NDIS is a way of providing funding to individuals with a disability. The goal of the NDIS is to provide you with the resources you need now, so you can build your capacity and independence for the future.
- Services and support through organisations such as Genetic Alliance Australia or Parent Connect.
- Physio Labs - Give us a call on 07 5610 1933 to see how we can support you